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Abstract

A comparatively general theoretical analysis is presented for a laminar steady
flow of an ionized gas in the continuum region, with emphasis placed on the
heat transfer. The effects of applied electromagnetic fields, nonequilibrium
temperature and composition, and variable thermophysical properties are taken
into account. A two-temperature plasma is considered in which the electron
temperature may exceed the temperature of the heavy particles.
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Laminar Flow Heat Transfer From a Gaseous Plasma at
Elevated Electron Temperature in the Presence of
Electromagnetic Fields

I. Introduction

Electrode erosion in plasma-propulsion and power-
generation devices can be caused by intense heat flux to
the electrodes, especially at the anode. In the past,
theoretical evaluation of anode heat flux was severely
limited; only heat flux from a high-temperature gaseous
plasma without an electromagnetic field could be pre-
dicted. Most of the earlier work relating to plasmas was
confined to reentry problems. Experiments were con-
ducted by Gruszczynski (Ref. 1) and Rose (Ref. 2) in
which heat-transfer data at the stagnation point were
obtained for axisymmetric bodies in shock tubes. It was
found that Nu/(Re)” was almost independent of the
flight velocity. Park (Refs. 3 and 4) measured the heat
transfer in an argon-arc tunnel, and his results indicated
that this was true for the frozen condition. Theoretical
investigations of the different aspects of heat transfer
from laminar boundary layers were made by several
authors, Bade (Ref. 5) solved the stagnation-point
boundary-layer equations by introducing a power series
in the viscosity coefficient. Similar approaches were also
taken by Back (Refs. 6 and 7) and Mirels (Refs. 8 and 9).
Bose (Ref. 10) solved several different cases of plasma
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heat transfer, including the boundary layer, which were
numerically exact for the nitrogen and argon plasmas in
the equilibrium condition. The thermophysical-properties
data were taken from Penski (Ref. 11) and others (Refs.
12 and 13). Bose found that Nu(p./pw.)/(Re)” can
become as large as half the value it has for a low-
temperature gas for which properties are assumed to be
constant.

An important breakthrough in predicting the heat
transfer from a two-temperature plasma was achieved
by devising methods to compute the composition of two-
temperature gases (Refs. 14-16) and by introducing terms
due to enthalpy transport by electrons (Refs. 17 and 18).
Shih and associates (Refs. 19 and 20) presented a simple
anode heat-transfer model. The contribution of the
electric current to the anode heat flux is separated from
other heat-transfer mechanisms in this model; the overall
contribution of the electric current to the anode heat
flux is expressed as the sum of individual contributions
from the anode fall, the work function of the anode
material, and the enthalpy carried by the electron cur-
rent. Another important contribution to the understanding



of a two-temperature boundary layer is an analysis of
magnetohydrodynamics (MHD) channel flow made by
Sherman and Reshotko (Ref. 21), They presented for the
first time an analysis of the boundary layer of a two-
temperature fluid for which applied electromagnetic
fields, current flow, and the presence of a sheath are
taken into account.

The basic difference between the analyses of all of
the references cited and the present analysis is that the
former pertain to boundary-layer flows only, whereas
the present analysis is more general. It does not include
the boundary-layer restrictions, except where such
restrictions may be imposed as a special case.

Some comments on signs pertaining to the present
analysis should be noted. The electron charge is assumed
to be positive (e*). This means that the motion of the
electrons in a positive coordinate direction produces a
positive current density. Although this is not the estab-
lished convention, it has been found to be very useful
because the electrons and not the ions are mainly
responsible for the current flow.

ll. Fundamental Equations

The following quantities are assumed to be known:
(1) the electron and heavy-particle temperatures T, and
T}, respectively, at a reference point; (2) the pressure p;
(3) the gas velocity V; (4) the kind of gas; (5) the char-
acteristic length L of the model; and (6) the magnitude
of any externally applied electromagnetic fields. Further-
more, the analysis is based on a physical model in which
the following apply: (1) The gravitational effects are
neglected. (2) The radiation pressure is small. (3) The
Hall parameter is small, and hence the thermophysical
properties are independent of directions. (4) The current
is carried mainly by electrons; therefore, j; =0 and
j= +je. (5) A quasineutral plasma exists; that is,
n, =13 iXn;, where i is the degree of ionization.
(6) The plasma consists only of atoms, electrons, and
singly charged ions.

A few remarks are in order concerning the physical
model. It is known that, in an electric field, the electrons
move much faster than do the ions. For example, con-
sidering a typical case of an argon plasma at 1 atm in
an electric field of 100 V/m, the characteristic drift or
field velocity for electrons is 600 m/s; for ions, it is
1 m/s. To maintain quasineutrality, the electron flux in a
field must be constant; that is, ¥ * 0., = 0, which also

means that V «j = 0. In addition to the fact that elec-
trons move fast in the electric field, they may also diffuse
in pairs with the ions (Fig. 1). That is, independent of
the externally applied electric field, electrons and ions
move in pairs at a diffusive velocity consistent with the
ambipelar diffusion coefficient D,,, (Refs. 22 and 23
given by the relation

2Dea Dei

Doy, = m (1)

In addition to these two velocities, designated as the
field and diffusive velocities, a third is the directed-mass
average velocity of the particles.

ﬁe =V'ne— Damb nV(ne/n)
r'si =V-ne-Damb nv<ne/n)
hg=Ven+2D nv<ne/n)

Fig. 1. Flux of particles n

For a steady-state condition, in the absence of any
externally applied field, the diffusion flux of atoms must
be equal to the sum of the diffusion fluxes of the electrons
and ions. Thus, atoms also diffuse at a drift velocity
consistent with the diffusion coefficient D,p.

The paragraphs that follow contain the relevant
equations.

A. Equations of State

For a two-temperature plasma, the equation of state is
» = kg (Tgng + T2 nj> , bar (2)
13
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Since p; = kg m; n;/R*, and §; = T./Ty, Eq. (2) can also

be rewritten as
B T}z[0<7ne>pe+%pi] b

p= , bar (3)

my,

B. Equation of Continuity of Species

In terms of number density, the equation for continuity
of the jth species is

V *(n;V;) = Rj, m™ s7* 4)

where R; is the number rate of production of the jth
species by chemical reaction. Now,

V= VY,V ®)

where V is the directed-mass averaged velocity, V; is
the diffusive velocity of species caused by the concentra-
tion gradient, and V7, is the field velocity of the species
in an electromagnetic field given by the relation

;o = b s
Vo Tl S S = e ©

This gives two different definitions of current; namely,
the convection current,

jos =em;V; (7)

which is the total charge carried by the jth species per
unit area and time, and the field current,

ii = em;Vy, (8)
which is a portion of the convection current.

By multiplying Eq. (4) by ksm;/R*, and taking the
continuity of current into account, one can rewrite Eq.
(4) in a much simpler form. Since

PjV;j =—-p Dy, V g (ga)

=4 (9b)
Equation (4) becomes

A (pJV) -V (P Damb \Y g;) = Mgj, kg/ms's (10)

The quantity mg; is the mass rate of production of the
species.
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C. Equation of Global Continuity

If Eq. (10) is added over all species, and it is noted
that p = Sp;, and that Smg; = 0, the global-continuity
equation is

v (pV)=0 (11)

D. Equation of Motfion of Species

For the jth species,

Ve (piVi Vi) =v 1 +F], (12)
where
TS 2 s rs
=PV V)8 0]
8rs = Kronek’s delta: 8™ =0, 8" =1 (13)
S EAS
5T o ox7
and

FTf — Nje; (E}+ Vj XB) = Pei,j (E} + V}XB)

J

E. Equation of Global Motion

If Eq. (12) is added over all species, the equation of
global motion becomes
p(VI V)" Vo =¥ 1 + jXB (14)

where

85 = 0, =1

o = VT AV 1o
Tooxt ox”
j - EPel.j‘r’fj - Ej]
F. Equation of Energy of Species
For the jth species, the energy equation is
Ve (piViES) =V (k; VT))+ V- (V1)

+ Qi + Qe — Zg; (16)



vzl 3 R ;
CR o AN O R S
2 2 m; it I 2

Q,. = energy transferred by molecular encounter
(elastic + inelastic) = Qj corr + Qs ctem

Qi = V;j Pel,i (E}‘}' V;XB) = jf°E}
Now,

Ve (pVE]) =V (piViEy) + 3ViV - (p,VV5)
V| (P:‘zvj)

=V *(p;VE;) + Vv * (p;Vy, E))
+ V- (p,V,E)

+3VIV (o, V] V)

+ Vi m (17
2 ‘R j )
Also,
_ 3 R* .
v (p;VE;) = 5 ; PV V +(giT;) +pV V +(gV3)
4+ pVIn Vg (18)

If Egs. (17) and (18) are substituted into Eq. (16), and
it is noted that g; + g, =1 and V; =V, ~V, the two
energy equations for the electrons and heavy particles are
as given below.

For the electrons:

3 R* 3 R
T, PY Y @T) =5 5 V(e Dane V )
4 Ve(k VT.) — %%”—V-(jTe)

+ j 'E} + Qe.chem

M by (T, — Ty) T, J/mis
my
(19)

For the heavy particles:

L

iy

N)i 98]

Ve (,ODambImi vgz)
3me.
+ AVAR (kh v Th + "’1’7‘1“‘ kB (Te - Th) Feh
h

- Qe,chem + V- <VTPS> (20}

G. Equation of Global Energy

If Eq. (16) is added over all species, and it is noted
that

P YA (p]V;E‘;) = V- (pEOV) 4+ V- EPJV;E]
(21)
SV (VjTl,]:S) = V- (VTrs) — V-3 (p]V;)

the following equation is obtained:
Ve (pEOV) =3 V'(kj VT]) -5V [pJV; (EJ + p]/p])]

-l" Ve (VTTS) + j M E} - 2 ERJ' (22)
Now, if it is noted that

S, €r; = €g,

DAV [ID]V; (E] + pj/p])] = - V'pDambImi Vgx

5 R*
-V pDamb—Z_'m'Tevge
bygr) @

Equation (22) becomes

va s Fo—=V by kj VT] + Ve (pDambImi v gl)

R S

Me

+ % v- (pDambT(’ Vge)

V- (T + V- (VUo) + - E, — &
(24)
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If the global-momentum equation is multiplied by V”
for respective directions, and these are added, the equa-
tion for kinetic energy is obtained. By subtracting this
from Eq. (24), is may be shown (after some transforma-
tion) that

pVV  h —VVep=V(k,VT) + V- (k VT,
+ Ve (pDamblmi Vgl)

5 R#

v - (PDambTe vge)

where
¢ = (s + p) V + V (the dissipation function) (26)
and

5 R 5 R*
h=—
2 m,

TT], +—2~ETege +Imig1' (27>

H. Electromagnetic Equations

For a steady-state condition and a quasineutral plasma,
Maxwell’s equations are

V XE,=0, V-E;=0
(28)
vV XH=j, V:B=0
and Ohm’s law is
j=o[E, + (VXB)] + ——V p, — ——(jXB)
s en, " en, J
(29)

lll. Heat Transfer

A. General Heat-Transfer Relations at the Wall

Validity of the continuum theory is assumed in the
main flow field to a location b, which is a mean free
path of the collected particles from the surface (Fig. 2).
This mean free path is much longer than the distance
across which the applied electric potential on the surface
is shielded (sheath region). At moderate pressures (p > 1
atm), it is found that the electron mean free path A, is
much longer than the Debye shielding distance ),
whereas the ion mean free path A; =~ A, (Ref. 24).
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The heat flux at the wall is the convective heat flux
at b plus the energy gained (or lost) in the free-fall
region and the radiative heat flux to the surface:

qQv = gs — A + qr (30)

It should be noted that heat added to the gas (including
energy transfer to the particles being accelerated in the
sheath) is considered to be positive. Thus, heat trans-
ferred to the wall is negative. From Eq. (25), the convec-
tive heat flux at the edge of the sheath, which is
transferred to the wall, is

q = _klz VTh — ke VTe - pDambImi vgl

5 R*

- "Q‘ E PDathe v &e
5 ks .
+ ‘E‘ "é— Teb (3]‘>

The gradients and properties in Eq. (31) are evaluated
at b (see Fig. 2). It is to be noted that k; and k, are not
the heat-conductivity coefficients of the “pure” gases, but
specify only the contribution from the heavy particles
and electrons. With the help of Fay’s mixing rule
(Ref. 25), it can be shown that k, is of the order
(x.k’), and that k; is of the order (x.k, +x:k}); where
x; = n;/n, the mol ratio and primes denote the heat-
conductivity coefficient of “pure” gases.

For many cases, the mol fraction of electrons x, at
the wall is very small. In addition, for a quasineutral
plasma, g —=m, g./m.. Equation (31), therefore,



reduces to

_ - m o, 5 RY
gy — kh v Th pDamh(Imi m, -+ 2 M, T«?) vge’

5 ky .

In some instances, it is useful to define an effective
heat-conductivity coefficient by the relation

B m, 5 R* dg, dT,
k= ki + pDamm, <Imi m T T >dT + ke gr
(33)

Equation (33) has unique solutions for frozen and
equilibrium plasmas. The effective heat flux to the wall
is given by the relation

5k

G k;,V Th + — 2

2T, — A + qr (34)

B. Sheath Analysis

1. Species in a decelerating field. To compute the
energy gain (or loss) in the sheath Ag, a potential @, is
applied to the body surface to retard the jth species and
to attract the kth species. The jth species reaches the
wall in free fall provided that the random velocity at b
is v; > (2¢ | 9w | /M;)*. The flux of the jth species reach-
ing the wall njy and their associated energy flux at b is,
therefore, found by integrating from (2¢] @, |/M;)*”* to
infinity and not zero to infinity (Ref. 26). Thus,

O\ V2 —
n;, = —Ny <2k: Z&) exp (———————:Bl :;,'P"’ l> ,m2g™t (35)
7 K
(TN (el
qip = — Ny <m}‘> (el ®w| + 2kp T;) exp (—k_gﬁ—>
= n;y (|| + 2ks T;), J/m?s (36)

The loss of energy in the retarding field is Aq; = —nyy
e | @ |; therefore, the net energy flux from the jth species
to the wall is

qu - 2r‘ljw kB Ti: ]/11]2-5 (37>

2. Species in an accelerating field. Similarly, for the
accelerating kth species, the flux of particles at the wall,
as well as the associated energy fluxes at b and w and

the gain, are

, . T
My = Ay = Ty ( 2 BA;; > (383)
= e (2D N 2k 1) = 2K Teh (38b)
Yxh Ieh O M, By B 4% My
ka - 1ikw (2 kB TJ» + e ! cPw | ) (380)
Ay, = Ty €| Puo | (38d)

3. Species emitted from the wall. In the case of a mass
flux of jth species being emitted from the wall, namely,
n) . there is an associated energy flux at the wall:

‘I;‘v = Aq} = Iliw (Ejw + € ¢u) (39)
where E; is the average energy of the particles just
emitted and ¢, is the work function of the material. The
process may also be considered in another way. The free
electrons, when they “condense” on the wall, give rise
to a heat flux that is expressed as

q'ew = Aq; = 1'lew € by = je bw (40)

4. Recombination at the wall. Furthermore, there is
also a possibility that a flux of the jth species n;,, recom-
bine with their counterparts at the wall, and release
an energy:

qw = Aq : n.. w (y — € u) (41)
Several special physical cases for which evaluation of

the heat flux to the wall is considered are discussed
below.

C. Heat Transfer at the Anode

At the anode, the current is carried mainly by the
accelerating electrons:

. kg Ten \ "
J = € Ngy, <"2'§-M—§'> (42)

Thus, the equation for the total heat flux from Egs. (34),
(38), and (40) becomes

Q=@ — j(Qs+ du) T 4

—k(V Ty +%—I§ﬁ~ Tep

=j (0. + bu) + e (43)

ll
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Equation (43) is the same as Eqs. (83) and (89) of Eckert
and Pfender (see Ref. 19).

D. Heat Transfer at the Cathede

Generally, the ion current attracted at the cathode is
very small and the current is maintained by thermionic
or field emissions from the surface (Ref. 27). A simple
estimation of the different emission mechanisms shows
clearly that thermionic emission is indeed the dominating
mechanism in high-intensity arcs. For such cases (neglect-
ing the enthalpy of the emitted electrons), the total heat
flux to the wall is

ks

. 5 . .
e = qp — J bw =~ _k<v Th)b +'—2_'_8_]Teb_]¢w+qk.
(44)

E. Heat Transfer to an Insulated Conducting Wall
Between the Electrodes

A conducting wall placed between the electrodes, but
insulated from them (Fig, 3), is capable of circulating an
electric current. Near the cathode, the wall is positive
with respect to the plasma, and the electrons may flow
to the wall. Near the anode, the wall is negative with
respect to the plasma, and the ions may drift to the wall
and recombine, thus giving rise to an effective current
j flowing through the wall. The heat flux to the wall in
this case is

qQuw = 9 — 1.lewe‘ﬁw + iy (Ii — e<;l>w) + qr
=@ +LL+q=—k(VT)),

5 ks . j
+ 7-6—1Teb +—é—I, +qR (45)

where I; is the ionization energy of the ions in electron-
volts. Unfortunately, it is difficult to estimate the current.
For segmented or nonconducting walls, j = 0, and Eq. (45)
reduces to the usual heat-transfer relation for a plasma
in which there is no current flow.

F. Electrostatic Probes

Electrostatic probes are very simple instruments that
may be used to measure the electron temperature of the
free electrons of a gaseous plasma. Detailed theory and
experiments are contained in the excellent review by
Cheng (Ref, 28). Such probes are cooled, and are char-
acterized by no surface emission. The current density is

JPL TECHNICAL REPORT 32-1447
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Fig. 3. Current flow and potential in a conducting
wall between two electrodes

of the order of magnitude of 0.1 A/mm? The probe is
both positively and negatively biased with respect to
the plasma; for a strongly negative probe, the current is
carried mainly by the ions recombining on the surface.
The cases to be distinguished are described in the
paragraphs that follow.

1. Slightly negative or strongly positive probe. If it is
assumed that the potential applied to the probe is effec-
tively shielded in a region of thickness within an order
of magnitude of a Debye shielding distance, the current
flowing to the probe (see Ref. 24) is

s kBTeb v
= eneb<2ﬂM6> €

= —e Dam V Nep (46)
where
€ = exp (_(;c ?f;’) , P <0
=1, Q>0 (47)

From Egs. (2), (3), and (46), the boundary condition
at b is

kyTo, \ "
Zeb ('éfm%‘) € = Damb (V ge)b (48)
where
g = 'jj (49a)



and

(49b)

p _(k};nze)n
e _‘ET‘“ e

The current density, computed from Egs., (48) and
(46) for a given applied probe potential, is substituted
into the anode heat-transfer relation (Eq. 43) to compute
the heat flux.

2. Strongly negative probes. If it is assumed that the
potential applied to the probe is effectively shielded
within the free-fall region of ions, n., = ny, and the
current is

. kB Thb v
) = € Ny (27‘_—M> (50)

The boundary condition for the electrons is
(V ge)y =0 (51)

The heat flux to the probe by recombination is
Qo=—k(VT)+(i—ege) +ac  (52)

IV. Similarity Laws

A parametric study of the differential equations is now
made to determine the importance of different dimen-
sionless numbers. As a first approximation, the following
assumnptions are believed to be justified:

(1) The induced magnetic field is small and the applied
magnetic field does not substantially change the
pressure.

(2) The thermophysical properties are represented by
their average values.

(3) The plasma is either considered as frozen or in
thermodynamic equilibrium, except that T, =< T;.

(4) The radiation is neglected.

(5) The compression and viscous terms in the energy
equation are neglected.

(6) The electron pressure and Hall effects are
neglected.

As a consequence, the fundamental equations are:
Continuity:

VeV=0 (53)

Motion:
p(VV ) V=—-Vp+,VV+jiXB
(54)
Energy:
pVVeh~pVe,V-T)y=—V -q+~1—7—-’—
a
55)
. 5 kB N (
q= kVTh'l*?—g— Te
Heat flux at b:
I — ’_kVTh +%% ‘Teb:aATh
(56)

Equations (53) through (56) lead to the following heat-
transfer relation:

Nu = Nu(Re, Pr,0,N,, N,, N,) (87)
where
oL .
Nu = o L = a characteristic length
Re = LYL pr=12
7 k
_T.
0 B Th
[i1BL . .
N, = s U = a characteristic velocit
) Y
___IrlL
N. = cpUcpATh
_ Skslj|L
No= ke 8)

The three dimensionless parameters N;, N,, and N,
have the following meanings: N, is the ratio of the
Lorentz force to the dynamic pressure; N, is the ratio of
the production of heat by joule heating to the convection
of heat; and N, represents the ratio of enthalpy transport
by the electrons to the heat conduction.

For no current flow (j = 0), Eq. (57) reduces to

Nu = Nu(Re, Pr, 9) (59)
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Only for # = 1 is it possible to use all low-temperature
heat-transfer relations suitably modified to account for
variable properties.

V. Flow Between Two Parallel Flat Plates

The effect of current on heat transfer will be better
understood if a simplified problem is now considered.
A conducting fluid is assumed to flow in a channel be-
tween two parallel flat plates, as shown in Fig. 4. In
addition, it is assumed that a uniform current j is flowing
between the cathode ¢ and the anode A, that the tem-
perature and velocity profiles are fully developed, and
that the thermophysical properties are constant. The
assumption of constant thermophysical properties is not
correct for a pure gas plasma, but is reasonably realistic
for seeded plasmas. It is also assumed that T = T, = T},
in the continuum region, The temperatures at the two
edges of the sheath are assumed to be the same as the
two temperatures at the walls. Electrons are moving
readily from the wall to the fluid, and vice versa, with
the work function zero (¢, = 0). For cold walls with very
little thermionic emission, the small work function allows
the electrons to move freely without excessive potential
drop near the cathode. The electric field near both walls
will be the same as the average applied field E,,,, = j/o.

The solution of the continuity and momentum equa-
tions with no slip condition at the sheath edge gives
essentially the solution of a Hagen~Poiseuille flow. The
energy and heat-flux equations at the sheath edge
(boundary b) are:

Energy:
dzT__Iy""[ 5 kg .dT
o e (60)
Heat flux at b:
dT 5 kg .
qb:‘—kgy—“f*?—eg-]TE—a(TA—Tc)
(61)

The variable o is the convective heat-transfer coefficient,
T, is the anode surface temperature, and 7T, is the
cathode surface temperature.
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Fig. 4. Current flow between two parallel plates

With T#* =T/T. and y* =y/L, Egs. (60) and (61)

are nondimensionalized into

d#T* . dT* ,
E]’E_N3EF_N4N3 (62)
ol 1 _ are
where
o 5 kB 7’ L _ 4 627<
Ne="%ke >  NTmE,.T,

The boundary conditions for the cathode and anode are:

For the cathode:

y* =0, T =1 (65a)
For the anode:
y* =1, T# =T4* (65b)
The solution of Eq. (62) is
o _ 1 —expNgy*

(66)

The two relations expressing the Nusselt numbers are:

For the cathode:

N, [TH-NN—1
N%W(L_Rﬂ< e T 1N
(67)



For the anode:

Nu, = exp N, + T,* — NA_)

N:z TA*"_NLANdl‘l
(1 - T, 1~ exp N;

(68)

For very small currents (j—0), N, becomes zero and ~
Egs. (65) through (68) reduce to ™~ — ®
~

# =1+ y* (Te* — 1), Nu, = Nuy = 1 3 ~
(69)

A parameter that includes the Nusselt number and (@) Ny=2.0, N,=0.5
temperature, Nu (1 — T,*), is plotted in Fig. 5 for the — () Ny=2.0, N, =0.5
cathode and the anode vs T,* for different values of ~ 3 4
N, and N,. Values were determined from Eqs. (67) and -
(68). Typical numerical values of N; and N4 may be calcu- ~ —
lated, for example, by considering the distance between ~— @
the electrodes to be L = 10~ m, the current density to =~
be j = 5 X 10° A/m?, the thermal conductivity of the gas ~
(assuming it is argon) to be k = 0.5 J/m-s-°K, with an
electrical conductivity ¢ = 10* A/V-m, and a cathode @
temperature T, = 3000°K. The values of N, and N, are
then computed to be N, = 2.1 and N, = 0.36.

Ny (I-T;'\)

Computation of the temperature profile and Nusselt
number was done with the values of N; in the range of @
0 to 6 and with the values of N, in the range of 0.1 to 0.5.
In Fig. 5, two values of N; were chosen to be 0.4 and
2.0 and two values of N, to be 0.1 and 0.5. For a given
T .*, the parameter Nu (1 — T,*) is a function of (N;/N,) ~ —— ANODE
for the cathode and a function of (N3 X N,) for the
anode. In a given channel of width L and cathode tem-
perature T., an increase in N, at constant Ny may be
accomplished by an increase in the current density,
whereas comparisons over a range of N, with constant N,
would normally reflect a comparison of different gases.

CATHODE

The larger values of Nu(1 — T,*) for the anode than
for the cathode (see Fig. 5) result from changes in tem-

-at

perature distributions across the channel. The analysis = B 69)
indicates that the relative value of anode-to-cathode .

% ) . 3" ke ,Eq.(64)
temperature T,* = T,/T, is very important. In actual )
practice, the temperature of the anode is generally much N, = #r_ Eq. (64)
lower than that of the cathode because the anode is 7%
cooled and thermionic emission is allowed to occur at the
cathode; therefore, T,* < 1. In arc-plasma devices, a -1 L ‘
reasonable value of T,* is 0.2. Actually, consideration of NORMALIZED GAS TEMPERATURE (T3=T, /T_)
sheath and surface effects (caused, for example, by the
cathode and anode fall regions, as well as the emission Fig. 5. Nu {1 — T %) vs T % for N, = 0, 0.4, and
work on the surface, or work function) will result in a 2.0 and N, = 0.1 and 0.5

much higher heat flux for the anode and much lower
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values at the cathode than those computed from Egs. (61)
and (63) and the Nusselt relations given by Eqs. (67) and
(68). A method that takes the surface and sheath effects
into consideration is described in Section 111,

For equal temperatures of the cathode and the anode
(T4* = 1), the Nusselt number approaches infinity and
Nu(l — T,*) can be computed from Eqs. (67) and (68).
However, it is not possible to compute the heat flux from
the Nusselt number for T,* = 1; therefore, for this case,
the heat flux must be computed directly from the wall
temperature and the temperature gradient at the wall,
using Eq. (61).

The effect of T,* on the temperature distributions
across the channel, computed from Eq. (66), is shown in
Fig. 6 for typical values of N; and N, (namely, N, = 4
and N, = 0.3). However, when N; = 0, the temperature
distribution is independent of N, which is shown by
Eq. (66). For experimental purposes, it is important that
T.* <1, not only to enable thermionic emission at the
cathode, but also to make it easier to measure the change
in temperature distribution caused by a change in the
current flow, as the influence of the current is greater
under these conditions. For the limiting case of Ny =0,
that is, the current density j = 0, the temperature dis-
tribution across the channel for all values of N, is linear,
as shown by Eq. (69); the heat transfer reduces to pure
conduction so that Nu, = Nu, = 1.

For a typical value of T,* = 0.2, the temperature dis-
tribution across the channel is shown in Figs. 7 and 8
for different values of Ny and N,. It may be observed

more clearly in Fig. 8 that, when the anode temperature

is lower than that of the cathode, a reversal in the sign
of the temperature gradient can occur at the cathode
(y* = 0). For example, when N; = 2.0 and N, = 0.5, the
gas temperature in the vicinity of the cathode is raised
sufficiently by joule heating for the temperature gradient
to be positive; hence, heat transfer by convection occurs
from the gas to the cathode. However, when N, is re-
duced to 0.1, the gas temperature is lower than that of
the cathode surface, and heat is transferred by convec-
tion from the cathode to the gas. It should be recalled
that such a comparison of different values of N, at a con-
stant value of N, infers a comparison of different gases
because N, is related to gas properties and is independent
of the current density. For a typical gas with given N,
(e.g., N, = 0.3), a similar reversal of temperature gradient
at the cathode is observed when the current density is
raised sufficiently to bring N; from 0 to 4.
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Fig. 6. Effect of relative anode temperature T,* on the
temperature distribution across the channel

VI. Summary and Conclusions

This report presents a comparatively general analysis
of heat transfer for a two-temperature gaseous plasma in
the presence of electromagnetic fields. A singly ijonized,
quasineutral plasma is assumed in which the properties
are variable and the flow is laminar. The total velocity
of the electrons is considered to be the sum of the mass
averaged directed velocity of the gas mixture plus an
ambipolar-diffusion velocity resulting from the concen-
tration gradient of the electrons plus a field velocity of
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/1)

NORMALIZED GAS TEMPERATURE (T*

———N,=0.3

N4=0.1

0 0.5 1.0
NORMALIZED DISTANCE FROM THE CATHODE (y* = y/L)

Fig. 7. Temperature distribution across the
channel for T % = 0.2

the electrons in an electromagnetic field. The field velocity
for ions is assumed to be negligible.

It has been shown that the Nusselt number depends
upon six different dimensionless parameters (Eq. 57)
compared to two parameters for a nonionized, low-
temperature gas flow without applied electromagnetic
felds. The total heat flux to the wall consists of the
convective heat flux (which can be computed from
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Fig. 8. Temperature distribution in the vicinity of
the cathode for T,% = 0.2

Nusselt’s relations) plus additional terms representing
energy loss or gain at the sheath edge near the surface.

A sheath analysis has been presented for a species in
an accelerating field, in a decelerating field, emitted from
the wall, and recombining at the wall. Expressions for the
energy loss or gain terms are then obtained for special
cases of a cathode, an anode, and some other surfaces.
The total heat flux for the anode has been found to be
the same as that derived semiempirically by Eckert and
Pfender (see Ref. 18).

A simple heat-transfer model consisting of flow be-
tween parallel flat plates was then considered to show
the importance of different nondimensional parameters
(Eq. 64) on convective heat flux. The current was as-
sumed to be uniformly distributed and the thermophysi-
cal properties were assumed to be constant. The tem-
peratures of each of the species were taken to be equal
The distribution of the gas temperature between elec-
trodes was found to be dependent upon a dimensionless
variable N, which is proportional to the current, and on
another dimensionless variable N,, which is inversely
proportional to the cathode temperature and directly
proportional to the ratio of thermal-to-electrical
conductivity.
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The ratio of the anode-to-cathode surface temperatures
was also found to be important. For a typical value of
the ratio of these temperatures (T,* = 0.2), it has been
shown that a reversal in the sign of the convective heat
transfer can occur at the cathode by independently
adjusting the value of N, as well as by independently
adjusting the value of N, In a physical sense, the re-

versal in the convective heat flux to and from the cathode
is brought about by a change in the joule heating that
influences the temperature gradient at the surface,
Changes in N, to accomplish this reflect comparisons of
different gases because the thermophysical properties
are involved, whereas changes in N, reflect adjustments
in current density for a given gas.

Nomenclature

B magnetic induction, V/s-m?
D diftusion coeflicient, m?/s
ambipolar diffusion coeflicient, m?/s
E internal energy, J/kg
E° total energy = E + V%/2, J/kg
E/ externally applied electric field, V/m
¢ elementary charge = 1.602 X 10-*° A-s
volume force, N/m?
g; species mass-density ratio = p;/p
H magnetic field, A/m
h enthalpy, J/kg
I; ionization potential, eV
I.; ionization potential per unit mass ion, J/kg;
i degree of ionization

j current density, A/m? (electron current density
that is considered to be positive)

k thermal conductivity coefficient, J/m-°K-s
ks Boltzmann constant = 1.38 X 10-2¢ J/°K
L a characteristic length
M mass of particle, kg
m mol mass, kg/kmol
m, mass rate of production, kg/m?-s
N dimensionless number (Eqgs. 58 and 64)
n  number density, m?
n flux of particles, m2s!
Nu  Nusselt number

Pr  Prandtl number
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p pressure, bar

Q;. energy transferred to jth species by molecular
encounter, J/m?s

Q;: field energy, J/m3-s
Qj,chem

chemical energy carried away by jth species,

J/m?-s

q heat flux, J/m?-s

gy convective heat flux at b, J/m?-s

qr radiative heat flux, J/m?-s

R reaction rate, m3s!
R* universal gas constant = 8314 J/kmol-°K
Re Reynolds number

Sc¢  Schmidt number = pD/4

T temperature, °K

u  a characteristic velocity, m/s

YV fluid velocity, m/s
diffusive velocity of jth species, m/s
electromagnetic field velocity of jth species, m/s
V; velocity of jth species, m/s
V’ relative velocity of jth species, m/s

x; mol-fraction of jth species = n;/n
x,y coordinate directions, m

Z partition function

a convective heat-transfer coefficient, J/m?-s-°K

collision frequency, m-?s!
T collision frequency of one molecule, s

§ Kronek’s delta (Eq. 15)
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Nomenclature {conid)

radiative energy, J/m?®s Subscripts and superscripts
dynamic viscosity, kg-m/s A anode

temperature ratio = T./T), 4 atoms

mean free path, m b condition at one mean free path from body
Debye shielding distance, m surface

mobility coeflicient, m?/V-s ¢ cathode

density, kg/m? e electrons

charge density, A-s/m? f in the presence of a field
electrical conductivity, A-V/m h heavy particles

stress tensor i ions

dissipation function (Eq. 25) i any species

work function of surface material, V r,s coordinate directions
anode falls, V s sheath edge condition
potential drop in sheath w wall condition

vector operator dimensionless quantities
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